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Abstract Streaming data can be found in many different scenarios, in which data are generated and arriving
continuously. Sampling approaches have been proven as an effective means to cope with the sheer volume
of the streaming data. However, sampling methods also introduce uncertainty, which can affect the relia-
bility of subsequent analysis and visualization. In this paper, we propose a novel model called PDm and
visualization named uncertainty tree to present uncertainty that arises from sampling streaming data. PDm is
first introduced to characterize uncertainty of streaming data, and an optimization method is then proposed
to minimize uncertainty. Uncertainty tree is further developed to enhance data understanding by visualizing
uncertainty and revealing temporal patterns of streaming data. Lastly, a quantitative evaluation and real-
world examples have been conducted to demonstrate the effectiveness and efficacy of the proposed
techniques.

Keywords Uncertainty visualization � Streaming data � Optimization � Time-series data

1 Introduction

Advances in computing infrastructure have brought a variety of streaming data, which are generated
continuously. Effectively monitoring streaming data and quickly analyzing the spotted patterns become
increasingly important for various applications, such as social stream analytics (Liu et al. 2016b) and real-
time monitoring in smart factories (Xu et al. 2017). However, the sheer volume and high update frequency
do not allow for storing, processing, and analyzing the comprehensive streaming data (Crouser et al. 2017).
Thus, sampling techniques are widely and successfully adopted in numerous applications to cope with
streaming data (Vitter 1985; Efraimidis and Spirakis 2006). Nevertheless, sampling streaming data inevi-
tably produce uncertainty which can significantly affect the subsequent processing, analysis, and visual-
ization (Wu et al. 2012). Without the proper assessment and visualization of uncertainty, unreliable or even
erroneous conclusions can be drawn, resulting in undesired consequences (Thomson et al. 2005).

Let us consider an example to understand this problem. Suppose a marketing analyst wants to track and
analyze the popularity of two commercial electronic products, A and B, according to people’s comments on
Twitter (see Fig. 1). Direct access to Twitter Firehose allows him/her to continuously receive a huge volume
of tweets in real time. Given the extreme data size but limited computing resources (e.g., laptop), she/he has
to resort to sampling techniques (Vitter 1985; Efraimidis and Spirakis 2006) to track and analyze the
sampled, instead of the complete data. Suppose 60,000 tweets discuss product A, while only 40,000 tweets
comment on product B in the complete dataset, which means product A is hotter than B on Twitter. But
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there are only 24,000 tweets concerning with product A, while 26,000 tweets discuss product B in the
sampled dataset, as shown in Fig. 1. Without considering uncertainty of sampling the tweet stream, the
analyst may draw an erroneous conclusion that product B is hotter than product A. Thus, how to quantify,
minimize and make users aware of uncertainty is a key issue to the application of streaming data.

To address this problem, we have to overcome two obstacles. The first challenge is how to quantify and
minimize uncertainty of sampled data. Various models have been introduced to characterize or quantify
uncertainty arising in different disciplines (Gosink et al. 2013; Mirzargar et al. 2014). Although these
methods can be applied to temporal data simultaneously, they cannot reduce uncertainty or relieve the
impact on the subsequent analysis in the meantime. Thus, analysts have to employ extra methods to
minimize uncertainty that arises from sampling streaming data, which increases computational burden.
Limited by computational resources, it is necessary for researchers to develop a new model that can both
quantify and minimize uncertainty of sampled data efficiently.

The second challenge is how to make users aware of uncertainty and facilitate reliable analysis. The most
intuitive way is to develop uncertainty glyphs or encode uncertainty through visual channels, which can
assist analysts in maintaining a high-level awareness of uncertainty. In recent years, researchers have
introduced two visual metaphors, namely river flow (Liu et al. 2016b) and sedimentation (Huron et al.
2013), to visualize streaming data. These metaphors success in revealing streaming patterns and smoothing
transitions between incoming and aging data. But they ignore uncertainty and cannot assess its impact on the
subsequent analysis. Simply combining uncertainty glyphs or channels into existing visualizations may
increase visual complexity and even produce heavy visual clutter. Thus, a novel visualization that can
present both uncertainty and streaming patterns is required, which is also a non-trivial challenge.

This work focuses on the modeling and visualization of uncertainty that arises from sampling streaming
data. Specifically, we have proposed a novel model to quantify and minimize uncertainty in the meantime.
We incrementally extract sampled data from data streams and aggregate samples to generate the samples
distribution. We define uncertainty of sampled data as the dispersion among the new and aging samples
distributions (ISO 2008). This definition can be also regarded as a temporal generalization of variance,
which is flexible and can be applied in different disciplines. Considering the influence of uncertainty, we
cannot fully believe the generated samples distribution. Thus, we employ a linear model to estimate the
precise samples distribution. The linear model is easy to understand and can be simultaneously integrated
into the uncertainty model. We then acquire the estimated distribution of new samples using an optimization
method (Wan et al. 2016) which aims to minimize the global uncertainty. Inspired by Bayesian surprise
model (Correll and Heer 2016), we quantify the trustworthiness of aggregated samples and develop a novel
visualization called uncertainty tree to demonstrate the individual-level uncertainty. In the end, we evaluate
the model and visualization through a quantitative analysis and real-world examples.

Our contributions are summarized as follows:

• A novel model to characterize uncertainty that arises from sampling streaming data and an optimization
method to alleviate the impact of uncertainty.

• An uncertainty-aware visualization to help analysts facilitate trustworthy analysis and exploration of
streaming data.

• A quantitative evaluation and real-world examples to demonstrate the usage and validate the
effectiveness of proposed techniques.

(a) before sampling (b) after sampling

Value Value

A B A B

Fig. 1 Uncertainty arising from sampling streaming data can affect subsequent analysis and visualization. The opposite
conclusions may be generated from a the complete dataset and b the sampled dataset
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2 Related work

2.1 Uncertainty quantification

Uncertainty can arise from any stage in a data processing pipeline including data acquisition, transformation
and visualization (Pang et al. 1997). Thus, how to model, quantify and visualize uncertainty information
becomes an increasingly important topic across various domains (Skeels et al. 2008; Potter et al. 2012).
Pang et al. (1997) presented a comprehensive survey of techniques including adding glyphs, adding
geometry, modifying geometry, modifying attributes, animation and psycho-visual approaches that visually
represent scientific data together with uncertainty. Based on frameworks for scientific visualization,
Thomson et al. (2005) presented a general topology to describe uncertainty related to intelligence analysis.
Zuk and Carpendale (2007) extended topology to include the uncertainty of reasoning. MacEachren (1992)
introduced a conceptual model that related to geographic visualizations and addressed the difference
between data quantify and uncertainty. Furthermore, they outlined general principles from three perceptual
and cognitive theories (Bertin, Tufte and Ware) to analyze different uncertainty visualizations (Zuk and
Carpendale 2006). Recently, Potter et al. (2012) identified frequently occurring types of uncertainty and
connected them with common visual representations. We follow these well-established theories to analyze
the sampling of streaming data and characterize uncertainty through probability distribution and uncertainty
score.

Researchers have proposed various models and methods (Gosink et al. 2013; Mirzargar et al. 2014;
Chen et al. 2015; Wu et al. 2010; Liu et al. 2016a; Cao et al. 2016) to alleviate the influences of uncertainty
and improve the trustworthiness of analysis. These works can be classified into two groups. One group
demonstrates uncertainty with scientific data, particularly ensemble data. Gosink et al. (2013) proposed a
Bayesian model to characterize and visualize predictive uncertainty in numerical ensembles, while Chen
et al. (2015) moved a step forward. They introduced an uncertainty-aware framework to visualize and
explore multidimensional ensembles. The other group demonstrates uncertainty behind abstract information.
For example, Wu et al. (2010) developed a circular wheel visualization to convey the uncertainty in the user
feedback analysis. Liu et al. (2016a) introduced a variance/mean ratio(VMR) method to model uncertainty
in the microblog retrieval and proposed a graph layout integrated with a circular box plot. Instead of
employing the graph layout, Cao et al. (2016) proposed a triangle mesh to present the relationships between
uncertain data and their probabilistic labels. However, these models cannot be employed directly to process
streaming data due to the extremely large volume and fast updating rate. Hence, we introduce a novel model
which can not only decrease the reducible uncertainty but also reveal the uneliminated uncertainty behind
streaming data.

2.2 Uncertainty visualization

In addition to these well-established models, many intuitive visualizations were developed by researchers,
such as density plots (Feng et al. 2010), summary plot (Potter et al. 2010) and curved box plot (Mirzargar
et al. 2014). Feng et al. (2010) introduced a blurring method based on density plots to visualize uncertain
data in scatterplots and parallel coordinates. And Potter et al. (2010) proposed a summary box plot to
communicate descriptive statistics of uncertainty information. After that, Mirzargar et al. (2014) further
enhanced the box plot to visualize main features of curve ensembles in simulations. Uncertain graph and
network also attracted considerable attention from many researchers. Whitaker et al. (2013) introduce a
multi-level visualization based on node-link diagrams to support the exploration of fuzzy overlapping
communities in networks. Similarly, Schulz et al. (2017) investigated the probabilistic information of
sampled graphs and utilized splatting, boundary shapes and bundled edges to enhance node-link diagrams.
Park et al. (2016) introduced a visualization-aware sampling method to reduce the data size and guarantee
the visualization quality. Kim et al. (2015) proposed a rapid sampling method to preserve the visual
properties of visualizations, such as ordering. However, their methods focus on visualizing data directly
instead of integrating uncertainty into the visualizations. Inspired by the successful visual idioms, we
introduce a novel uncertainty visualization called uncertainty tree to reveal both uncertainty and data
patterns.
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2.3 Temporal visualization

Proper visualization techniques (Pak et al. 2003; Huron et al. 2013; Tanahashi et al. 2015) can facilitate
analysis and exploration of streaming data, which is a continuously updated, unbounded data sequence.
Wong et al. Pak et al. (2003) combined an adaptive visualization technique based on data stratification and
an incremental visualization technique based on data fusion to visualize transient data streams. Inspired by
physical sedimentation processes, Huron et al. (2013) proposed a novel visual metaphor called visual
sedimentation to depict the incoming data as falling objects. Tanahashi et al. (2015) applied storylines to
visualize streaming data with an efficient framework which consists of data management, layout con-
struction and refinement. In recent years, text streams have attracted considerable attention. Various models
and visualizations have been proposed to help people visually analyze topics evolution patterns (Cui et al.
2014; Liu et al. 2016b). Cui et al. (2014) introduced an incremental evolutionary tree cut algorithm to
represent each tree with a tree cut according to users’ interests, which supports a progressive exploration and
analysis of hierarchical topics in large text corpora. However, the relationship between two consecutive
topics remains unclear in the visualization. Based on a sedimentation metaphor, Liu et al. (2016b) aligned
existing topics with new representative topics and developed TopicStream which supports exploration of
hierarchical topic evolution. In this work, we have implemented a prototype to reveal both the temporal
pattern and uncertainty of streaming data and integrated a set of interactions to facilitate level-of-detail
exploration.

3 Problem and approach overview

This work is trying to mitigate the influence of uncertainty that arises from sampling streaming data.
Specifically, our approach is established on the multivariate data, such as tweets stream, Internet flow and
urban trajectories. Given N samples extracted at time span t, we want to estimate the samples distribution f̂t
and calculate the overall uncertainty Ut. The samples distribution can assist analysts in gaining valuable
insights toward streaming data. For example, the geolocation is one attribute of tweets stream. We estimate
the region distribution of sampled tweets so that we can understand which city has more or less tweets
activities. Then the Twitter cooperation can reduce advertisements in cities which have more active users
and put more on other places. Instead of showing numerical results of the model, we have also developed a
novel visualization called uncertainty tree to demonstrate uncertainty and facilitate level-of-detail explo-
ration of streaming data (Fig. 2).

Our approaches have the following steps:
Step 1 Sampling and aggregating streaming data. Direct processing and visualizing streaming data may

come with two obstacles. One is that streaming data update continuously and appear at the unpre-
dictable time. The other is that the sheer volume of streaming data increases the visual complexity heavily.
Thus, we employ a moving time window to sample streaming data. At time span t, we aggregate samples si
and the aggregate data are denoted as ajðtÞ ¼ fs1; s2; . . .; sng.

Step 2 Estimating the samples distribution and reducing uncertainty. Given the aggregate data aj, we can
generate the initial samples distribution ft which may not be accurate enough due to uncertainty. Thus, we
employ a linear model to estimate the precise samples distribution f̂t, which closes to the distribution of
complete data. Moreover, we define uncertainty Ut based on a temporal generalization of variance and

…
…
…

… …

(b) (d)(c)(a)

Fig. 2 Approach overview: a collecting and sampling streaming data at time span t. Each node represents one data item, and
darker nodes represent samples. b Aggregating samples into aj and generating the samples distribution ftðajÞ; j ¼ 1; . . .;mt. c
Estimating the precise distribution f̂t and reducing uncertainty Ut. d Visualizing uncertainty and supporting level-of-detail
exploration. Each node represents aggregated samples to reduce visual complexity
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integrate f̂t into the definition. We formulate the two tasks (estimation and reduction) into one optimization
problem so that we can estimate f̂t and reduce Ut at meantime.

Step 3 Visualizing uncertainty and facilitating level-of-detail exploration. We develop a new tree-shape
visual idiom called uncertainty tree to demonstrate both individual- and global-level uncertainty. At the
individual level, we assess the trustworthiness of the aggregate data aj using Bayesian surprise
model (Correll and Heer 2016) according to the estimated distribution f̂t. At the global level, we obtain the
uncertainty Ut. In order to reveal temporal patterns of streaming data, uncertainty tree integrates a set of
flexible interactions which help analysts facilitate level-of-detail exploration (Table 1).

4 Data sampling and aggregation

This section describes the process of sampling and aggregating streaming data. The streaming data are
difficult to be processed and visualized due to three characteristics: high updating frequency, unpre-
dictable incoming time and the sheer volume. Sampling, such as reservoir techniques (Vitter 1985; Efrai-
midis and Spirakis 2006), becomes a necessary pre-processing step for analysts who are limited by
computational resources to cope with streaming data. The sampling process of streaming data is little bit
different from sampling static datasets, as shown in Fig. 3. The sampling size of streaming data is fixed,
while the sampling ratio is dynamic and decided by the total size of the complete dataset. For a newly
arriving data item, the sampler decides to take it or not according to specific sampling methods. In our
application, we choose the standard reservoir method (Vitter 1985) to sample streaming data. Notably, our
model is established on the sampled dataset instead of specific sampling methods, which makes the model
applicable to various sampling techniques.

We propose a moving time window to sample and aggregate streaming data at time span t. Samples can
be aggregated by their attributes. For example, we can aggregate tweet samples according to the country tag.
Each of the aggregate data aj represents one country, and its value is defined as the number of tweets posted
in that country at time span t. At the end of the time window, our model is invoked to process aggregate data
and then the visualization updates. Besides, we can set the length of the time window so that we can explore

Table 1 Mathematical notations

Notation Definition

t The tth time span
si The ith sample of streaming data
aj The jth aggregate data
vjðtÞ The number of samples in aj
v̂jðtÞ The estimated number of samples in aj
ft The initial samples distribution at time span t
f̂t The estimated samples distribution at time span t
Ut The overall uncertainty of streaming data
ct The reliability score at time span t
wt The reliability weight at time span t
Nt The total number of samples at time span t
TtðajÞ The trustworthiness of the aggregate data aj

(b)

(a)

Fig. 3 The illustration of reservoir sampling (Vitter 1985): a the data stream. b The reservoir which stores samples. The newly
arriving datum #C is sampled according to a random probability. Once acquiring a new sample, the sampler would abandon an
existing one (#A) in the reservoir randomly. Thus, the volume of the reservoir is fixed, but the sampling ratio is dynamic
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uncertainty and reveal temporal patterns of streaming data at different times granularity (e.g., minutes,
hours, days).

5 Estimation and uncertainty model

This section describes how to estimate the samples distribution f̂t and minimize the overall uncertainty Ut of
streaming data.

5.1 Samples distribution

Given the aggregate data aj; j ¼ 1; . . .;mt, the initial samples distribution ft can be acquired by

ftðajÞ ¼
vjðtÞPmt

k¼1 vkðtÞ
ð1Þ

The samples distribution can help users understand the numerical relationships among samples, which is
the foundation of various analytic tasks. Nevertheless, the initial distribution generated from sampled data
cannot precisely describe the data distribution in the complete dataset due to uncertainty arising from
sampling. We define the accuracy as the distance between the distributions extracted from sampled data and
complete data. The inaccurate initial samples distribution cannot maintain the relative relationships among
data items in the complete dataset, which has negative effects on the subsequent analysis and visualization.
Back to the example in Sect. 1, we can calculate the tweets distribution in sampled dataset
(f ðAÞ ¼ 0:48; f ðBÞ ¼ 0:52) and complete data (f ðAÞ ¼ 0:6; f ðBÞ ¼ 0:4). Obviously, the initial samples
distribution describes the wrong numerical relationships among products A and B. Thus, we estimate the
samples distribution by applying a weighting scheme (Wan et al. 2016) which combines historical and
current information extracted from aging and incoming data, respectively.

f̂t ¼
Xm�1

i¼0

wt�ift�i ð2Þ

where wt�i is the reliability weight of the initial samples distribution ft�i and subject to
Pm�1

i¼0 wt�i ¼ 1. m is
the number of aging time spans. Equation 2 can be regarded as a linear regression model which is widely
used in machine learning and statistics (Freedman et al. 2007). Typically, the parameters of a linear
regression model can be obtained using the least-square method or the maximum likelihood method which
minimizes the errors between estimated and labeled data. However, the labels f1; . . .; ft in our application are
generated from sampled data directly and may not be accurate due to uncertainty. Thus, we define uncer-
tainty based on Eq. 2 and estimate the samples distribution by formulating an optimization problem to
minimize uncertainty.

5.2 Model

5.2.1 Uncertainty definition

Uncertainty refers to the phenomenon that people cannot precisely describe objects or states, which can be
measured by various methods in different disciplines. We follow the formal definition of uncertainty, which
can be found in the ISO guide (ISO 2008), to define uncertainty of sampled streaming data.

Ut ¼
1

m

Xm�1

i¼0

kf t � ft�ik2 ð3Þ

f t ¼
1

m

Xm�1

i¼0

ft�i ð4Þ

Equations 3 and 4 can be regarded as a temporal generalization of variance which is widely used in statistics
to calculate the dispersion of random phenomenon. Thus, our uncertainty definition can be also applied in
other applications, such as the time-series ensemble. Nevertheless, Eqs. 3 and 4 assume that the reliability
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of the information at a different time spans is the same and equal to 1
m
, which is not rationale according to

Wan et al. (2016). We revise the uncertainty definition as:

Ut ¼
Xm�1

i¼0

ct�ikf̂t � ft�ik2; ct�i [ 0 ð5Þ

where ct is the reliability score of the samples distribution ft. In Eq. 5, f t is replaced by f̂t because the
reliability scores at different times may not be equal. We can also obtain the relationships between the
reliability score ct and reliability weight wt by combining Eqs. 2 and 5.

wt ¼
ct

Pm�1
i¼0 ct�i

ð6Þ

Equation 5 would collapse to Eq. 3 when reliability scores are the same and equal to 1
m
. Thus, we

conclude that Eq. 5 is a rational generalization of Eq. 3 by considering the reliability of the information at
different times span may not be equal.

5.2.2 Uncertainty minimization

In this section, we cast an optimization problem to estimate the samples distribution by minimizing
uncertainty and demonstrate how to solve it.

min
ct ;ct�1;...;ct�mþ1 [ 0

Ut ¼
Xm�1

i¼0

ct�ikf̂t � ft�ik2 ð7Þ

This problem can be efficiently solved by a two-stage iterative optimization model named KDEm (Wan
et al. 2016).

Algorithm 1 demonstrates the pseudocode. The algorithm first initializes all reliability scores fct�igm�1
i¼0

by assigning 1
m
. In the first stage, the algorithm updates the reliability weights fwt�igm�1

i¼0 using Eq. 6 and
obtains f̂t using Eq. 2. In the second stage, once the new f̂t is obtained, the algorithm updates reliability
scores fct�igm�1

i¼0 by

c
ðkþ1Þ
t�i ¼ � log

kf̂ ðkþ1Þ
t � ft�ik

Pm�1
j¼0 kf̂ ðkþ1Þ

t � ft�jk

 !

ð8Þ

where i ¼ 0; . . .;m� 1 and k is the iteration times. If Ut, which is derived from Eq. 5, changes considerably,
then steps (a) and (b) of Algorithm 1 will be repeated.

KDEm makes sure that f̂t converges to the accurate samples distribution to the largest extent. If an initial
samples distribution ft�j is close to the estimated f̂t, then the associated reliability score ct�j will update to a
higher value according to Eq. 8. If the updated reliability scores ct�j become more trustworthy, which
indicates that ft�j is more similar to the samples distribution of the complete data, then the obtained f̂t will be
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more accurate. Thus, trustworthy reliability scores ct; . . .; ct�mþ1 and accurate f̂t can mutually enhance each
other by iterating step (a) and (b) until uncertainty Ut cannot be reduced.

In the literature (Wan et al. 2016), the distance norm k � k between two samples distributions f̂t and ft is
defined as:

kf̂ � fk2 ¼ Khðf̂ ; f̂ Þ � 2Khðf ; f̂ Þ þ Khðf ; f Þ ð9Þ

where Khð�; f Þ is a kernel function (e.g., Gaussian kernel), and h is a bandwidth. Equation 9 is developed to
measure the distance between distributions of numerical variables and cannot be applied in our applications.
Thus, we employ the KL divergence to measure the distance between f̂t and ft, both of which are
distributions of discrete variables aj; j ¼ 1; . . .;mt.

kf̂ � fk ¼
X

f ðiÞ log f ðiÞ
f̂ ðiÞ

ð10Þ

In statistic, KL divergence is widely used to measure the similarity between two distributions. If ft is similar
to f̂t, then kf̂t � ftk will be decreased according to Eq. 10 and the associated reliability score ct will be
increased according to Eq. 8. Thus, KL divergence is also a rational measure to calculate the distance
between two discrete distributions. We name the improved model as PDm, and the comparison between
KDEm and PDm is illustrated by a quantitative evaluation in Sect. 7.

The obtained uncertainty Ut and the reliability score ct provide two important signals that can detect
major changes of the data stream in which analysts may be interested. If the data stream changes abruptly,
then the initial samples distribution ft will be quite different from previous distributions. We describe this
phenomenon as diversity. According to algorithm 1, our model will turn down the reliability score ct
automatically. But the minimized uncertainty may be still a little higher than before. Thus, the higher
uncertainty Ut and the lower reliability score ct indicate that some major events may appear and change the
data stream abruptly. In the next section, we visualize these valuable cues to make analysts be aware of
uncertainty when exploring streaming data.

6 Uncertainty visualization

This section introduces a novel uncertainty visualization called uncertainty tree to facilitate exploration and
analysis of streaming data and make users be aware of uncertainty. The visualization demonstrates
uncertainty of sampled streaming data at two levels, namely individual and global levels. At the individual
level, we propose the Bayesian surprise model to assess the trustworthiness of the aggregate data aj and
present the trustworthy level using color encodings. At the global level, we present the relative changes of
the overall uncertainty Ut using diverging color encodings to reveal the overall evolution of uncertainty.
Furthermore, we integrate uncertainty tree with a set of interactions to facilitate level-of-detail exploration
and analysis.

6.1 Surprise node

The sheer volume of streaming data increases the heavy burden of the human cognitive system and makes it
difficult for users to search a pattern visually. Therefore, we visualize the aggregate data a1; a2; . . .amt

to
decrease the visual complexity. For each aggregate data aj, we obtain the value vjðtÞ and distribution f̂t by
solving Eq. 7. As discussed above, the value vjðtÞ may not reflect the precise ratio of aj in the complete
dataset due to uncertainty, which has negative effects in the subsequent analysis. Thus, we employ Bayesian
surprise model (Correll and Heer 2016) to assess the trustworthy level of aggregate data aj; j ¼ 1; . . .mt.

Bayesian surprise model aims to measure the changes in beliefs by comparing the prior and posterior
information, of which the bigger differences indicate higher-level untrustworthiness of data. In general, the
prior information can be obtained from historical data, while the posterior information is usually collected
through observation or estimation (Correll and Heer 2016). Thus, the value vjðtÞ is defined as the posterior
information in our application and the estimated value v̂jðtÞ can be regarded as the prior information since it
is estimated from historical values vjðt � jÞ; j ¼ 1; 2; 3. . ..

v̂ijðtÞ ¼ Nt � f̂tðaijÞ ð11Þ
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where Nt is the total number of samples at time span t, and f̂tðajÞ is the estimated distribution of aggregate
data aj; j ¼ 1; . . .;mt. The distribution f̂t is obtained by iteratively updating the weighting scheme which
balances information at different time spans until uncertainty is minimized (see Sect. 5). Thus, f̂t relieves the
impact of uncertainty to a large extent and can estimate the precise value v̂jðtÞ.

Correll et al. Correll and Heer (2016) have developed an efficient method based on Bayesian theory to
calculate the surprise distribution of temporal events data. We follow this definition and define the trust-
worthy level of each aggregate data aj as

TtðajÞ ¼
Xm�1

k¼0

wt�k � ð1� jEj � OjjÞ � logð1� jEj � OjjÞ ð12Þ

where Ej and Oj are distributions of the estimated value v̂jðtÞ and observed value vjðtÞ at the temporal side,
respectively. Bayesian surprise captures the notion that the changes between prior and posterior information
characterize the trustworthiness of aggregate data where the larger difference indicates the lower confidence
level.

As shown in Fig. 4a, each of the aggregate data is visualized using a rectangle whose color encodes the
trustworthy levels. The more trustworthy the aggregate data is, the more salient the associated node appears
to be, and vice verse. Thus, we name our design as surprise node which provides a visual cue for people to
be aware of the untrustworthy data. Moreover, we employ two kinds of contours, namely dashed contour
and solid contour, to represent the dynamic changes of values at consecutive time spans. A rectangle with a
dashed contour or solid contour represents the item that has a larger or lower value than before, respectively.
Thus, the contour encoding helps users understand how the value of aggregate data evolves.

6.2 Uncertainty tree

We design a new visual metaphor, uncertainty tree, to lay out surprise nodes and visualize the overall
uncertainty Ut. Uncertainty tree is the core component of the visualization system, providing an intuitive
visual summary of uncertainty information, which help analysts develop a growing understanding of how
and where uncertainty was introduced. Uncertainty tree can also help users control the confidence level of
datasets through some flexible interactions and facilitate more trustworthy exploration and analysis.

The uncertainty tree is stacked by surprise nodes at time span t, and the layout is oriented from bottom to
top. For each aggregate data aj, the associated surprise node is positioned according to its value vjðtÞ.
Specifically, surprise nodes who have larger values can occupy higher positions along the y-axis and those
with the same values are placed at the same level, as shown in Fig. 4b. The order of surprise nodes along the
x-axis within a time span has no actual meaning. We provide users two layout options to decide the overall
shape of uncertainty tree, namely symmetric and one-sided (see Fig. 4c, d), both of which present the overall
data distribution. However, stacking surprise nodes directly may lead to sparse layout, as shown in Fig. 4b.
Thus, we bin y-axis to make uncertainty tree more scalable (see Fig. 4c). Furthermore, we place uncertainty
trees horizontally to reveal temporal patterns and help analysts compare multiple trees easily.

(a) (b)

(c)

(d)

Fig. 4 Design considerations of uncertainty tree: a encoding the trustworthiness of the surprise node using sequential colors,
b stacking surprise nodes according to their values, c binning y-axis to reduce visual sparsity, d providing two kinds of layouts
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We next visualize the global-level uncertainty Ut which assists analysts to understand the overall
variation of streaming data. As shown in Fig. 6, we encode the relative change of Ut using the background
color of uncertainty tree. The diverging color legend is used since the relative change of Ut ranges from
negative to positive. Compared to visualize the absolute value of Ut, the relative change provides a more
intuitive visual cue for analysts to understand the evolution of the overall uncertainty.

6.3 Interaction

Besides general interactions (i.e., panning), uncertainty tree integrates a set of other interactions to support
level-of-detail exploration and analysis, such as the following:

• Hover When users hover a node, a pop-up card displays the detail information about the node and the
contour would be changed to reveal the difference between the current and previous values.

• Highlight When users click a node, the associated nodes at different time spans would be connected to
reveal the temporal pattern. Moreover, the width of the link will be decreased/increased according to its
value change.

• Filter The visualization provides visual cues for analysts to be aware of uncertainty. The filtering
interaction helps users exclude untrustworthy data and facilitate reliable analysis.

• Relayout In order to assist users to understand the distribution of streaming data, we provide users two
options to reshape uncertainty tree, namely symmetric and one-sided. An animation will be invoked to
present a smooth transition when layout changes.

7 Quantitative evaluation

In this section, we conduct a quantitative evaluation to validate whether the improvement to KDEm is
efficient by comparing PDm and KDEm, which is the baseline method. We test PDm and KDEm on
artificial datasets and measure the accuracy of their results and the average implementation time. In this
experiment, we first construct several datasets on the basis of two ground-truthed distributions, namely
uniform distribution (UD) and geometric distribution (GD). We then test PDm and KDEm, both of which
can estimate ground-truthed distributions from these artificial datasets, and employ rooted-mean-square
errors (RMSE) to measure the accuracy of their results. We also record the time when PDm and KDEm are
tested on different datasets. Furthermore, we repeat the experiment five times to eliminate the interference of
other factors, such as CPU scheduling. Finally, we compare PDm and KDEm according to their average
implementation time and RMSE to validate the efficiency of PDm.

Datasets are generated as follows. We first generate n artificial distributions whose dimension is m for
each ground-truthed distribution (UD or GD). Generating the artificial distribution is interfered by a random
error who follows Gaussian distribution Nð0;r2Þ. Therefore, errors exist between artificial distributions and
ground-truthed distributions. We test both PDm and KDEm on two ground-truthed distributions for r ¼
0:1;m ¼ 100 and n ¼ 100; 1000; 10;000. In total, two small-size (n ¼ 100), medium-size (n ¼ 1000) and
large-size (n ¼ 10;000) artificial datasets are generated according to ground-truthed distributions.

Measures For each dataset, we have one ground-truthed distribution (UD or GD) and one estimated
distribution, which is obtained using PDm or KDEm. We can use RMSE to measure the accuracy of results.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r

Xr

i¼1

kfe � fgk2
s

ð13Þ

where r is the repetition times, and fe and fg are the estimated and ground-truthed distribution, respectively.
We use the average implementation time to measure the computational performance of algorithms, which is
defined as

t ¼ 1

r

Xr

i¼1

ti ð14Þ

where ti is the implementation time of the ith experiment. Smaller RMSE and average implementation time
indicate better performance.
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Results are shown in Fig. 5. Figure 5a–c presents the ground-truthed distribution, UD and estimated
distributions of PDm and KDEm. We notice that the estimated distribution of PDm is much closer to the
ground-truthed distribution compared to that of KDEm among the three datasets, which have different data
size. We notice the similar phenomenon through observing Fig. 5e–g, which present the ground-truthed
distribution, GD and results of both PDm and KDEm. Thus, we conclude that PDm has better performance
than KDEm from the aspect of accuracy. Figure 5d, h validates this conclusion because the RMSE values of
KDEm (blue line) are higher than those of PDm (orange line). Furthermore, we also notice that estimated
distributions become more accurate with the increase in data size. This is because increasing knowledge
about the truth can decrease uncertainty (Potter et al. 2012).

Figure 5d, h also presents the average implementation time of both PDm (orange bar) and KDEm (blue
bar), which grows considerably with the increase of data size. Nevertheless, a significant improvement is
observed in the computational performance of PDm, which can be a hundred times, even a thousand times
faster than KDEm when data size is relatively large. Therefore, PDm can achieve better performance than
KDEm in both the implementation time and accuracy of results. Finally, we conclude that the improvement
to KDEm is efficient according to the results of this experiment.

8 Usage scenario

This section introduces real-world examples to demonstrate the usage and efficacy of the visualization.
Social media has become an inevitable role in modern life. People tend to present life moments, comment on
public issues and follow the opinion leader on social media, such as Twitter (Wu et al. 2016). Therefore, we
pick this application as our examples. The data were collected through Twitter API.1 We collected tweets
posted on January 1, 2016, and each tweet contains 31 attributes including ID, timestamp, hashtag and
content. The entire dataset contains around 8 million tweets and occupies 3 GB of disk space. We then

(a)

(e) (f) (g)

(h)
(b) (c)

(d)

Fig. 5 Model comparison. a–c result on the uniform distribution, whereas e–g result on the geometric distribution. The blue
line represents the ground-truthed distribution. The darker blue bar represents the estimated distribution of PDm, and the lighter
blue bar represents that of KDEm. d, h summarize results on two ground-truthed distributions. The x-axis represents the size of
the datasets. The bar chart represents the average implementation time that is measured by the left y-axis. The line
chart represents the RMSE that is measured by the right y-axis. The blue color presents results of KDEm, and the orange color
presents results of PDm

1 https://developer.twitter.com/.
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employed the reservoir technique (Vitter 1985) to sample tweets stream to simulate the sampling of
streaming data in the real world. The volume of the reservoir is fixed at 1.5 million, and the sampling rate is
approximately a quarter.

The data are visualized in Fig. 6. Each surprise node represents one topic discussed on Twitter, and the
value of node equals to the counting number of tweets concerning the topic. We set the time granularity to
10 min and bin y-axis by 15 to decrease the visual complexity. We also filter topics whose value is less than
30 so that we can focus on well-received topics on Twitter. After clicking the top node, analysts can
immediately see that the hottest topic is happynewyear. Meanwhile, analysts can easily understand the
evolution of the hottest topic with the enhancement of links and contours of surprise nodes. Moreover,
analysts can observe that the hottest topic is filled with darker color which indicates its trustworthy level is
high. The visualization is validated by the truth that most people celebrate the new year on January 1, 2016,
so that happynewyear becomes the hottest topic and the conclusion is reliable.

Analysts can also observe one ‘‘different’’ topic trndnl in Fig. 6d whose color is clearly lighter than
neighboring nodes. This pattern indicates that the estimated value of the node is much less than the sampled
value, which makes the trustworthy level of the node lower than that of others. Analysts would conclude that
the topic trndnl is hotter than topic feliz2016 according to their value difference without considering
uncertainty. However, the conclusion is wrong according to the complete dataset which validates that
uncertainty can affect subsequent analysis and visualization. Thus, analysts can easily discover untrust-
worthy data and be aware of uncertainty with uncertainty tree. However, uncertainty does not equal to
errors (Freedman et al. 2007). The primary object of uncertainty tree is to make users be aware of uncer-
tainty instead of erasing erroneous data. Thus, uncertainty tree provides the filtering interaction for users so
that they can decide to remove data or not. Moreover, uncertainty tree provides estimated values to help
analysts make decisions.

Besides, we can also visualize the tweets distribution among countries all over the world. The time
granularity is set to 10 min, and the y-axis is binned by 50 to generate legible visualizations. Each surprise
node represents a country, and the y-axis represents tweets number. According to Fig. 7c, analysts can
observe that the Philippines has the most Twitter fans since it always occupies the top level. Moreover, the
trustworthiness of surprise nodes indicates that this observation is reliable. However, there exist countries
whose position in uncertainty tree is untrustworthy (see Fig. 7a, b). According to estimated values, the
tweets posted in the State of Israel may be undersampled, while the tweets posted in Kazakhstan may be

(a)

(b)

(c)

(d)
(e)

(f)

Fig. 6 Our system includes (a) a panel which controls parameters of the model and visualization, (b) uncertainty tree which
integrates level-of-detail information (c), (d) and (e), as well as (f) a timeline slider which tracks the evolution of the streaming
data
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oversampled. These untrustworthy samples also increase the overall uncertainty at time span 31 where the
background color of uncertainty tree becomes red.

9 User feedback

To understand the usability of uncertainty tree, we conduct semi-structured interviews with two visual-
ization designers (P1 and P2). Both of them have more than two years of experiences in visualization design
and research. The interviews begin with an introduction about uncertainty tree. The interviewees can freely
explore our system and raise any questions. Then, we ask them to complete the following tasks:

Task 1 Locate the uncertain time span and find the untrustworthy data.
Task 2 Analyze the semantic information of the untrustworthy data.
We use the same dataset as mentioned above. The default time granularity is set to 10 min, and the y-axis

is binned by 50. In task 1, both interviewees can promptly find the uncertain time window since its
background is an apparent visual cue for users. They can also successfully locate the untrustworthy node
whose color is clearly lighter than surrounding nodes. The pattern in Fig. 6 is also validated by the two
participants. In task 2, both participants can acquire the detail information of the aggregate data using our
interactions. However, P2 mentioned that ‘‘it is not easy to compare two neighboring nodes at the same
level.’’ The reason is that users have to click nodes twice to obtain the values. We plan to employ an
adaptive layout method to solve this issue. The nodes at the same level can be re-layout according to their
values in the y-axis when users invoke interactions. P1 also gave us valuable suggestions that ‘‘it would be
useful to engage users using animations to update nodes.’’

10 Discussion

The analysis of streaming data is hindered by the large volume and high update frequency. To address these
challenges, sampling techniques are widely employed to enable analysts to explore incomplete datasets.
However, sampling inevitably introduces uncertainty. Direct visualization of sampled streaming data may
lead to undesired results or even erroneous conclusions. Thus, we develop a novel model called PDm and
new visualization named uncertainty tree to characterize uncertainty that arises from sampling streaming
data. Our approaches can help analysts perform more trustworthy analysis and draw more reliable con-
clusions from streaming data.

Although PDm is established on streaming data, it can be extended to other temporal datasets, such as
the time-series ensemble. On the one hand, the uncertainty quantification method in PDm follows the formal

(a) (b)

(c)

Fig. 7 Tweets distribution among countries: a the State of Israel. b Kazakhstan. c the Philippines
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definition of uncertainty in the ISO guide (ISO 2008), which is accepted in various disciplines. On the other
hand, the uncertainty formula (see Eq. 5) is an extension to traditional variance formula (Freedman et al.
2007) whose mathematical form can be flexibly applied in different problems. Thus, PDm is a general model
to quantify uncertainty on temporal datasets.

Uncertainty tree is a novel visualization method which can both reveal temporal patterns of streaming
data and make people aware of uncertainty. Uncertainty tree visualizes the aggregated form of streaming
data and uses binned y-axis to stack aggregate data which makes it scalable to the different size of the
dataset. Two real-world examples indicate that uncertainty tree can be employed in different analysis
situations. Thus, it can be integrated as an attached view into other applications to facilitate trustworthy
exploring and analysis.

Although the evaluation demonstrates that PDm and uncertainty tree can be successfully applied in
practical applications, there exist some limitations. Equation 5 indicates that the abrupt change of streaming
data may also increase the global uncertainty Ut. PDm then reduces uncertainty and alleviates its impact to
the newly arriving data. However, two possibilities can account for the abrupt changes of streaming data.
One scenario is that uncertainty produces erroneous patterns, which analysts must ignore. The other scenario
is that novel patterns appear in the newly arriving data, which is caused by the diversity of data. PDm cannot
distinguish between the two different scenarios, namely uncertainty and diversity. Therefore, we plan to
incorporate user knowledge to maintain the balance between diversity and uncertainty. For example, a slider
widget can be used in the system which enables users to adjust the parameters of PDm and control the
results.

11 Conclusion

In this work, we present a new model called PDm to assist analysts to perform more trustworthy exploration
and analysis of streaming data. PDm first quantifies the global uncertainty of streaming data, and then an
optimization method is proposed to minimize it. We then develop a novel visualization named uncertainty
tree to enhance data understanding by presenting uncertainty at the different levels. The individual-level
uncertainty is revealed by Bayesian surprise model (Correll and Heer 2016) and visualized by surprise
nodes. We integrate uncertainty tree with a set of interactions to reveal temporal patterns of streaming data
and facilitate level-of-detail exploration. In the end, we conduct a quantitative evaluation and demonstrate
real-world examples to validate the effectiveness of our approaches.
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